View Single Post
  #1  
Unread 09-01-2014, 07:46 PM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,135
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default Robust and low cost uniform (15)N-labeling of proteins expressed in Drosophila S2 cells and Spodoptera frugiperda Sf9 cells for NMR applications.

Robust and low cost uniform (15)N-labeling of proteins expressed in Drosophila S2 cells and Spodoptera frugiperda Sf9 cells for NMR applications.

Robust and low cost uniform (15)N-labeling of proteins expressed in Drosophila S2 cells and Spodoptera frugiperda Sf9 cells for NMR applications.

J Struct Biol. 2014 Aug 27;

Authors: Meola A, Deville C, Jeffers SA, Guardado-Calvo P, Vasiliauskaite I, Sizun C, Girard-Blanc C, Malosse C, Heijenoort CV, Chamot-Rooke J, Krey T, Guittet E, Pêtres S, Rey FA, Bontems F

Abstract
Nuclear magnetic resonance spectroscopy is a powerful tool to study structural and functional properties of proteins, provided that they can be enriched in stable isotopes such as (15)N, (13)C and (2)H. This is usually easy and inexpensive when the proteins are expressed in E. coli, but many eukaryotic (human in particular) proteins cannot be produced this way. An alternative is to express them in insect cells. Labeled insect cell growth media are commercially available but at prohibitive prices, limiting the NMR studies to only a subset of biologically important proteins. Non-commercial solutions from academic institutions have been proposed, but none of them is really satisfying. We have developed a (15)N-labeling procedure based on the use of a commercial medium depleted of all amino acids and supplemented with a (15)N-labeled yeast autolysate for a total cost about five times lower than that of the currently available solutions. We have applied our procedure to the production of a non-polymerizable mutant of actin in Sf9 cells and of fragments of eukaryotic and viral membrane fusion proteins in S2 cells, which typically cannot be produced in E. coli, with production yields comparable to those obtained with standard commercial media. Our results support, in particular, the putative limits of a self-folding domain within a viral glycoprotein of unknown structure.


PMID: 25172991 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No