View Single Post
  #1  
Unread 04-16-2014, 11:07 AM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,173
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default Vanishing amplitude of backbone dynamics causes a true protein dynamical transition: H2 NMR studies on perdeuterated C-phycocyanin.

Vanishing amplitude of backbone dynamics causes a true protein dynamical transition: H2 NMR studies on perdeuterated C-phycocyanin.

Vanishing amplitude of backbone dynamics causes a true protein dynamical transition: H2 NMR studies on perdeuterated C-phycocyanin.

Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Mar;89(3-1):032710

Authors: Kämpf K, Kremmling B, Vogel M

Abstract
Using a combination of H2 nuclear magnetic resonance (NMR) methods, we study internal rotational dynamics of the perdeuterated protein C-phycocyanin (CPC) in dry and hydrated states over broad temperature and dynamic ranges with high angular resolution. Separating H2 NMR signals from methyl deuterons, we show that basically all backbone deuterons exhibit highly restricted motion occurring on time scales faster than microseconds. The amplitude of this motion increases when a hydration shell exists, while it decreases upon cooling and vanishes near 175 K. We conclude that the vanishing of the highly restricted motion marks a dynamical transition, which is independent of the time window and of a fundamental importance. This conclusion is supported by results from experimental and computational studies of the proteins myoglobin and elastin. In particular, we argue based on findings in molecular dynamics simulations that the behavior of the highly restricted motion of proteins at the dynamical transition resembles that of a characteristic secondary relaxation of liquids at the glass transition, namely the nearly constant loss. Furthermore, H2 NMR studies on perdeuterated CPC reveal that, in addition to highly restricted motion, small fractions of backbone segments exhibit weakly restricted dynamics when temperature and hydration are sufficiently high.


PMID: 24730877 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No