View Single Post
  #1  
Unread 11-21-2013, 01:14 AM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,137
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default Evidence for Coherent Transfer of para-Hydrogen-Induced Polarization at Low Magnetic Fields

From The DNP-NMR Blog:

Evidence for Coherent Transfer of para-Hydrogen-Induced Polarization at Low Magnetic Fields


Kiryutin, A.S., et al., Evidence for Coherent Transfer of para-Hydrogen-Induced Polarization at Low Magnetic Fields. The Journal of Physical Chemistry Letters, 2013. 4(15): p. 2514-2519.


http://dx.doi.org/10.1021/jz401210m


We have investigated the mechanism of para-hydrogen-induced polarization (PHIP) transfer from the original strongly aligned protons to other nuclei at low external magnetic fields. Although it is known that PHIP is efficiently transferred at low fields, the nature of the transfer mechanism, that is, coherent spin mixing or cross-relaxation, is not well established. Polarization transfer kinetics for individual protons of styrene was, for the first time, measured and modeled theoretically. Pronounced oscillations were observed indicating a coherent transfer mechanism. Spin coherences were excited by passing through an avoided level crossing of the nuclear spin energy levels. Transfer at avoided level crossings is selective with respect to spin order. Our work provides evidence that the coherent PHIP transfer mechanism is dominant at low magnetic fields.


Go to The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No