View Single Post
  #1  
Unread 09-21-2013, 06:50 PM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,175
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default Internal protein dynamics on ps to ?s timescales as studied by multi-frequency (15)N solid-state NMR relaxation.

Internal protein dynamics on ps to ?s timescales as studied by multi-frequency (15)N solid-state NMR relaxation.

Related Articles Internal protein dynamics on ps to ?s timescales as studied by multi-frequency (15)N solid-state NMR relaxation.

J Biomol NMR. 2013 Sep 19;

Authors: Zinkevich T, Chevelkov V, Reif B, Saalwächter K, Krushelnitsky A


Abstract
A comprehensive analysis of the dynamics of the SH3 domain of chicken alpha-spectrin is presented, based upon (15)N T 1 and on- and off-resonance T 1? relaxation times obtained on deuterated samples with a partial back-exchange of labile protons under a variety of the experimental conditions, taking explicitly into account the dipolar order parameters calculated from (15)N-(1)H dipole-dipole couplings. It is demonstrated that such a multi-frequency approach enables access to motional correlation times spanning about 6 orders of magnitude. We asses the validity of different motional models based upon orientation autocorrelation functions with a different number of motional components. We find that for many residues a "two components" model is not sufficient for a good description of the data and more complicated fitting models must be considered. We show that slow motions with correlation times on the order of 1-10*?s can be determined reliably in spite of rather low apparent amplitudes (below 1*%), and demonstrate that the distribution of the protein backbone mobility along the time scale axis is pronouncedly non-uniform and non-monotonic: two domains of fast (?*
Reply With Quote


Did you find this post helpful? Yes | No