View Single Post
  #1  
Unread 09-04-2013, 12:28 PM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,174
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default Global fold of human cannabinoid type 2 receptor probed by solid-state (13) C-, (15) N-MAS NMR and molecular dynamics simulations.

Global fold of human cannabinoid type 2 receptor probed by solid-state (13) C-, (15) N-MAS NMR and molecular dynamics simulations.

Global fold of human cannabinoid type 2 receptor probed by solid-state (13) C-, (15) N-MAS NMR and molecular dynamics simulations.

Proteins. 2013 Sep 2;

Authors: Kimura T, Vukoti K, Lynch DL, Hurst DP, Grossfield A, Pitman MC, Reggio PH, Yeliseev AA, Gawrisch K

Abstract
The global fold of human cannabinoid type 2 (CB2 ) receptor in the agonist-bound active state in lipid bilayers was investigated by solid-state (13) C- and (15) N magic-angle spinning (MAS) NMR, in combination with chemical-shift prediction from a structural model of the receptor obtained by microsecond-long molecular dynamics (MD) simulations. Uniformly (13) C-, and (15) N-labeled CB2 receptor was expressed in milligram quantities by bacterial fermentation, purified, and functionally reconstituted into liposomes. (13) C MAS NMR spectra were recorded without sensitivity enhancement for direct comparison of C? , C? , and C=O bands of superimposed resonances with predictions from protein structures generated by MD. The experimental NMR spectra matched the calculated spectra reasonably well indicating agreement of the global fold of the protein between experiment and simulations. In particular, the (13) C chemical shift distribution of C? resonances was shown to be very sensitive to both the primary amino acid sequence and the secondary structure of CB2 . Thus the shape of the C? band can be used as an indicator of CB2 global fold. The prediction from MD simulations indicated that upon receptor activation a rather limited number of amino acid residues, mainly located in the extracellular loop 2 and the second half of intracellular loop 3, change their chemical shifts significantly (>=1.5 ppm for carbons and >=5.0 ppm for nitrogens). Simulated two-dimensional (13) C? (i)-(13) C=O(i) and (13) C=O(i)-(15) NH(i+1) dipolar-interaction correlation spectra provide guidance for selective amino-acid labeling and signal assignment schemes to study the molecular mechanism of activation of CB2 by solid-state MAS NMR. © Proteins 2013;. © 2013 Wiley Periodicals, Inc.


PMID: 23999926 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No