View Single Post
  #1  
Unread 02-03-2013, 10:13 AM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,185
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default A 1H NMR metabolic profiling to the assessment of protein tyrosine phosphatase 1B role in liver regeneration after partial hepatectomy

A 1H NMR metabolic profiling to the assessment of protein tyrosine phosphatase 1B role in liver regeneration after partial hepatectomy

Available online 12 December 2012
Publication year: 2012
Source:Biochimie



Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of the tyrosine kinase growth factor signaling pathway, which is involved in major physiological mechanisms such as liver regeneration. We investigate early hepatic metabolic events produced by partial hepatectomy (PHx) for PTP1B deficient (PTP1B KO) and wild type (WT) mice using proton nuclear magnetic resonance spectroscopy. Metabolic response of the two genotypes produced 24*h upon PHx is compared using magic angle spinning high-resolution nuclear magnetic resonance (1H-HR-MAS-NMR) on intact liver tissues. In addition, genotype-associated metabolic profile changes were monitored during the first 48*h after PHx using high-resolution nuclear magnetic resonance (1H-HR-NMR) on liver extracts. A marked increase of lipid-related signals in regenerating livers was observed after 24*h PHx in either intact tissues or liver extracts studies. In spite of this common initial metabolic response, results obtained 48*h after PHx on liver extracts indicate a genotype-differential metabolic pattern. This metabolic pattern resulted in line with well known regenerative features such as more sustained cell proliferation, a better management of lipids as energy fuel and lessened liver injury for PTP1B KO mice as compared to WT. Taken together, these findings suggest the metabolic basis to the pivotal role of PTP1B in liver regeneration.
Graphical abstract

Highlights

? PTP1B KO mice showed an earlier and more sustained liver regeneration. ? PTP1B has a pivotal role in liver regeneration that affects the metabolic level. ? 1H NMR can differentiate metabolic response of PTP1B KO liver regeneration vs WT.





More...
Reply With Quote


Did you find this post helpful? Yes | No