View Single Post
  #1  
Unread 02-04-2011, 11:34 AM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,174
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default Measurement of multiple torsional angles from one-dimensional solid-state NMR spectra: application to the conformational analysis of a ligand in its biological receptor site.

Measurement of multiple torsional angles from one-dimensional solid-state NMR spectra: application to the conformational analysis of a ligand in its biological receptor site.

Measurement of multiple torsional angles from one-dimensional solid-state NMR spectra: application to the conformational analysis of a ligand in its biological receptor site.

Phys Chem Chem Phys. 2010 Nov 14;12(42):13999-4008

Authors: Edwards R, Madine J, Fielding L, Middleton DA

Knowledge of the three-dimensional structure of a ligand in the binding site of its biological receptor is a valuable asset that can assist disease research and guide drug discovery. Solid-state nuclear magnetic resonance (SSNMR) is a useful high-resolution technique for the structural analysis of small molecule or peptide ligands when bound to receptors. SSNMR-derived constraints on the molecular conformations of isotopically (e.g., (13)C and (15)N) enriched ligands usually take the form of through-space distances between atomic nuclei that are separated by three or more bonds. It is advantageous to supplement such distance measurements with independent geometric constraints to resolve structural ambiguities arising from molecular symmetry. Here it is demonstrated that multiple torsional angle constraints can be measured directly for a uniformly labelled biological ligand at a realistically low concentration (150 nmoles) in a practicable experiment time. A simple adaptation of a standard one-dimensional (13)C double-quantum filtered SSNMR experiment is used to measure the relative orientations of C-H bonds in CH(2)-CH and CH(2)-CH(2) groups, which influence (13)C double quantum signal amplitudes in a predictable way. The methodology is applied to uniformly (13)C and (15)N labelled glutamate ([U-(13)C,(15)N]Glu) bound to the ligand binding domain of the ionotropic glutamate receptor 2 (GluR2) in a microcrystalline preparation. Two torsional angle constraints are sufficient to eliminate the structural ambiguities associated with (13)C-(15)N interatomic distance measurements, and thus provide a reliable representation of the conformation of glutamate in its receptor-bound state.

PMID: 20877838 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No