View Single Post
  #1  
Unread 11-24-2010, 09:51 PM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,135
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default NMR structural characterization of the N-terminal domain of the adenylyl cyclase-asso

NMR structural characterization of the N-terminal domain of the adenylyl cyclase-associated protein (CAP) from Dictyostelium discoideum.

Related Articles NMR structural characterization of the N-terminal domain of the adenylyl cyclase-associated protein (CAP) from Dictyostelium discoideum.

J Biomol NMR. 2004 May;29(1):73-84

Authors: Mavoungou C, Israel L, Rehm T, Ksiazek D, Krajewski M, Popowicz G, Noegel AA, Schleicher M, Holak TA

Cyclase-associated proteins (CAPs) are highly conserved, ubiquitous actin binding proteins that are involved in microfilament reorganization. The N-termini of CAPs play a role in Ras signaling and bind adenylyl cyclase; the C-termini bind to G-actin. We report here the NMR characterization of the amino-terminal domain of CAP from Dictyostelium discoideum (CAP(1-226)). NMR data, including the steady state (1)H-(15)N heteronuclear NOE experiments, indicate that the first 50 N-terminal residues are unstructured and that this highly flexible serine-rich fragment is followed by a stable, folded core starting at Ser 51. The NMR structure of the folded core is an alpha-helix bundle composed of six antiparallel helices, in a stark contrast to the recently determined CAP C-terminal domain structure, which is solely built by beta-strands.

PMID: 15017141 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No