View Single Post
  #1  
Unread 11-24-2010, 09:16 PM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,187
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default NMR conformational studies of micelle-bound orexin-B: a neuropeptide involved in the

NMR conformational studies of micelle-bound orexin-B: a neuropeptide involved in the sleep/awake cycle and feeding regulation.

Related Articles NMR conformational studies of micelle-bound orexin-B: a neuropeptide involved in the sleep/awake cycle and feeding regulation.

J Biomol Struct Dyn. 2003 Dec;21(3):341-51

Authors: Miskolzie M, Lucyk S, Kotovych G

The preferred conformation of orexin-B, an orphan G-protein coupled receptor agonist (the human sequence is RSGPPGLQGRLQRLLQASGNHAAGILTM-NH(2)) has been determined by (1)H and (13)C 2D NMR spectroscopy and molecular modeling. Orexin-B has been implicated in sleep-wakefulness and feeding regulation. The membrane mimetic, sodium dodecylsulphate-d(25) (SDS), was used to mimic a physiological environment for the peptide. The secondary structure of orexin-B in SDS consists of two helical sections; helix I spans Leu(7) to Ser(18) and helix II spans Ala(22) to Leu(26). Helices I and II are believed to be involved in membrane binding, as is supported by the results of the spin label studies with 5-doxylstearic acid. Lee et al. (Eur. J. Biochem. 266, 831-839 (1999)) determined the [Phe(1)]-orexin-B conformation in water solution by NMR and showed that helix II extends from Ala(23) to Met(28). The C-terminal dipeptide, Thr(27)-Met(28), is unstructured is SDS, whereas in water it forms the end of helix II. The lack of apparent structure for Thr(27)-Met(28) in SDS allows the dipeptide to have conformational freedom to interact with the receptor. The conformation of orexin-B can now be used to explain the Ala substitution mutagenesis experiments and the D-amino acid substitution experiments (S. Asahi et al., Bioorg. Med. Chem. Lett. 13, 111-113, 2003). Asahi et al. have shown that Ala substitution from Gly(24) to Met(28) or D-amino acid substitution from Ala(23) to Met(28) causes a significant reduction in the potency of orexin-B for both OX(1)R and OX(2)R receptors. We postulate that helix II is involved in membrane recognition, and its binding to the membrane is essential for Thr(27)-Met(28) to adopt the correct receptor-binding conformation.

PMID: 14616030 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No