View Single Post
  #1  
Unread 11-24-2010, 08:49 PM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,135
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default Phosphorylation and flexibility of cyclic-AMP-dependent protein kinase (PKA) using (3

Phosphorylation and flexibility of cyclic-AMP-dependent protein kinase (PKA) using (31)P NMR spectroscopy.

Related Articles Phosphorylation and flexibility of cyclic-AMP-dependent protein kinase (PKA) using (31)P NMR spectroscopy.

Biochemistry. 2002 May 14;41(19):5968-77

Authors: Seifert MH, Breitenlechner CB, Bossemeyer D, Huber R, Holak TA, Engh RA

Cell signaling pathways rely on phosphotransfer reactions that are catalyzed by protein kinases. The protein kinases themselves are typically regulated by phosphorylation and concurrent structural rearrangements, both near the catalytic site and elsewhere. Thus, physiological function requires posttranslational modification and deformable structures. A prototypical example is provided by cyclic AMP-dependent protein kinase (PKA). It is activated by phosphorylation, is inhomogeneously phosphorylated when expressed in bacteria, and exhibits a wide range of dynamic properties. Here we use (31)P nuclear magnetic resonance (NMR) spectroscopy to characterize the phosphorylation states and to estimate the flexibility of the phosphorylation sites of 2-, 3-, and 4-fold phosphorylated PKA. The phosphorylation sites Ser10, Ser139, Thr197, and Ser338 are assigned to individual NMR resonances, assisted by complexation with AMP-PNP and dephosphorylation with alkaline phosphatase. Rotational diffusion correlation times estimated from resonance line widths show progressively increasing flexibilities for phosphothreonine 197, phosphoserines 139 and 338, and disorder at phosphoserine 10, consistent with crystal structures of PKA. However, because the apparent rotational diffusion correlation time fitted for phosphothreonine 197 of the activation loop is longer than the overall PKA rotational diffusion time, microsecond to millisecond time scale conformational exchange effects involving motions of phosphothreonine 197 are probable. These may represent "open"-"closed" transitions of the uncomplexed protein in solution. These data represent direct measurements of flexibilities also associated with functional properties, such as ATP binding and membrane association, and illustrate the applicability of (31)P NMR for functional and dynamic characterization of protein kinase phosphorylation sites.

PMID: 11993991 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No